Global·EN
CN EN
Forge Nano Build Better Products
Forge Nano Build Better Products
Forge Nano is a world-leading materials science company. Harnessing the power of our proprietary nanocoating technology, Atomic Armor we accelerate manufacturing innovation and transform product performance to achieve a more sustainable future.
What is PALD Technology
What is PALD Technology

ALD refers to atomic layer deposition technology, PALD refers to Particle Atomic Layer Deposition,which belongs to the branch of atomic layer deposition technology. PALD is a proprietary technology for ALD coating on powder-based materials.


After years of development, Forge Nano has formed a variety of laboratory solutions including: fluidized bed, rotating bed, vibrating bed and so on. And the innovative use of space ALD technology  makes it  pioneered to achieve mass production of coating .

  • Commonality
    The coating is consistent with the shape of the substrate
  • Controllability
    High thickness control accuracy
  • Uniformity
    The coating is uniform and continuous
Advantages of PALD
更好的绕镀性能提供质量更高的薄膜涂层

与其他薄膜沉积技术相比,原子层沉积方法可以在不平坦的表面上构筑涂层的效果更好。同样对于粉末类样品,由于更大的比表面积和表面结构,原子层沉积方法较好的绕镀性能提供质量更高的薄膜涂层。从工程角度考虑,原子层沉积可以形成均匀的超薄纳米涂层,以较低的原料成本获得更高性能的材料。

Advantages of PALD
PALD 可实现粉末颗粒无与伦比的包覆精度和均匀


Product Presentation
Product Presentation
Forge Nano's ALD products and service cover the entire spectrum from laboratory scale to pilot scale and large-scale commercial production. By loading one atomic layer thickness in a single cycle, our systems can precisely coat thicknesses from the sub-nanometer to the nanometer scale in throughput ranging from milligrams to kilotons.
Application area
Application area
Forge Nano’s proprietary Atomic Layer Deposition (ALD) technology enables atomic level engineering and nanoscale surface enhancement to build better materials and unlock its potential to build better products. Atomic Armor applies ALD coatings with speed and precision to unlock your product’s performance and scale beyond anything imaginable.
  • Protection
    Atomic Armor creates a nano shield to prevent negative reactions
  • Performance
    Atomic Armor unlocks product performance at the atomic level
Build Better Products
With Atomic Armor, Forge Nano is building better products
01 电池 02 半导体 03 金属/陶瓷粉末 04 催化领域 05 药物/药品
01
Build Better Batteries
The Future Is Electric

We are in the midst of a once-in-a-generation transformation. From fossil fuels to decarbonized, clean and sustainable energy. From internal combustion engines to electrified mobility.


To power this transformation, we need better batteries.

Batteries that look and act like today’s lithium-ion batteries but are built better. Batteries that deliver the functionality and value that automakers and consumers demand and deserve.


Atomic Armor improves the capacity and durability of lithium-ion batteries, making them charge faster and last longer – with better safety at a lower cost.


  • Energy
    Atomic Armor enablesbatteries to operate atmaximum potential byprotecting against firstcycle capacity loss
  • Charging
    Atomic Armor enablesfaster charging byprotecting againstunwanted reactions
  • Lifespan
    Atomic Armor extendsbattery lifetime byprotecting againstdegradation
  • Safety
    Atomic Armor acts as anano-scale firewall thatresists thermal runawayreaction
  • Cost
    Atomic Armor optimizesexisting material toincrease value and reducethe need for costlyadditives
02
Semiconductors

Atomic Armor delivers ultra-thin conformal coatings on semiconductor wafers and components, providing precise thickness control and robust film properties – superior to any other coating technology.


Atomic Armor – enabled by Forge Nano’s equipment and services – is more efficient and more cost effective than ever before.


Semiconductor fabricators can create hermetic, pin-hole free, low-stress thin films that offer excellent uniformity and precision for a range of applications, from 75-200mm wafers to fully assembled semiconductor packages ready for hermetic packaging.

  • Performance
    Atomic Armor enables semiconductors to continue to get smaller while unlocking more control
  • Precision

    Atomic Armor protects underlying material with an impenetrable, ultra-thin coating

  • Speed
    Forge Nano’s Atomic Armor process is 4x faster than conventional ALD
  • Sustainability
    Atomic Armor is 50x more efficient than conventional ALD, using less chemicals, materials and energy
03
Additive Manufacturing

3D printing is growing at an exponential rate, however, the technology still has significant limitations. Atomic Armor enhances the process to deliver higher-quality products.


3D printing is advancing the medical, dental, automotive, aerospace and defense industries.


Bespoke components with intricate designs and unique material properties can be made with ease for a wide variety of applications by 3D printing. Yet the technology suffers from significant issues that diminish product quality.


Applying Atomic Armor to metal 3D printing improves flowability, moisture/oxidation resistance, sintering interfaces and reduces inclusions.




  • Strength
    Atomic Armor makes stronger 3D-printed parts by adjusting the melt and oxidation windows during sintering
  • Protection

    Atomic Armor protects against unwanted reactions including oxidation during binder burnout

  • Innovation
    Atomic Armor enables the creation of new alloys by modifying reaction conditions
  • Quality

    Atomic Armor stabilizes materials, adjusts flowability and allows for a more consistent material and end part

04
Catalysis

Using Atomic Armor, we can build a catalyst that is more stable, robust and selective to reduce the energy consumption during chemical manufacturing.


Catalysts play a profoundly vital role in major industrial sectors of the world’s economy, such as petroleum (oil and gas), chemicals production (e.g., polymers/plastics), and even the food industry. Using kinetic and thermodynamic measurements to calculate real world process variability, we can determine the impact of Atomic Armor on selectivity, fouling resistance, and regeneration. This means cheaper, more efficient production of consumer goods – and reduced greenhouse gas emissions.

  • Lifetime
    Atomic Armor prevents unwanted reactions and protects catalysis during the regen process so it can be in use for a longer period
  • Selectivity
    Atomic Armor prevents unwanted reactions and protects catalysis during the regen process so it can be in use for a longer period
  • Cost Efficiency
    Atomic Armor reduces costs by using metals more efficiently and reducing reactivity so that less material is required to achieve the desired result
05
Pharmaceuticals

Atomic Armor improves the thermostability, compactability, flowability and particle dispersion of the powder materials used in pharmaceutical ingredients and medical devices.


The pharmaceutical industry processes a wide variety of powder materials, from active pharmaceutical ingredients (APIs) to filler materials for use in divided powders. Powders are processed into capsules, tablets, pellets, inhaler doses or ophthalmic treatments such as eye drops. Atomic Armor enhances powder processability to reduce manufacturing time and cost.

  • Lifespan

    Atomic Armor extends product shelf life by reducing the crystallization of powders

  • Stability

    Atomic Armor improves thermostability, triples flowability and enables time-release control of single-administration medicines

  • Price

    Atomic Armor enables drop-in ready manufacturing and ease of distribution of medicines to reduce costs

  • Efficacy & Safety
    Atomic Armor improves product efficacy by increasing the level of radioactivity
Application achievements
Application Achievements
粉末保形包覆 —— PALD 技术的基本实现方法

技术的变革需要创新精神,更依赖创新者之间的合作。Alan Weimer 与 Steve Geogre 两位教授自本世纪初起的合作,造就了全新的粉末工程加工技术:PALD(粉末原子层沉积)。而由此衍生的两家 ALD 技术公司 ALD Nanosolutions 以及 Forge Nano (二者在 2020 年完成合并)已经成为全球最大的粉末 ALD 技术推行者,实现从克级到千吨级的粉末表面保形涂层加工。

View More
粉末保形包覆 —— PALD 技术的基本实现方法
能源催化
且谈石墨负极沥青包覆的替代技术 —— 原子层沉积

原子层沉积技术可通过交替式的通入气相前驱体,从而实现基底表面可控的涂层材料原位生长。而如何对大规模的粉末材料进行 ALD 包覆,则是行业内的难题。Forge Nano 通过多年的技术积累,是目前全球唯一掌握解决方案的企业。

View More
且谈石墨负极沥青包覆的替代技术 —— 原子层沉积
一文了解粉末专用的原子层沉积方案

原子层沉积技术(ALD)是一种自限制性的化学气相沉积手段,通过将目标反应拆解为若干个半反应,实现表面涂层的原子层级厚度控制(0.1-100nm)。

View More
一文了解粉末专用的原子层沉积方案
能源催化
1.2 亿美金锂电及燃料电池“原子装甲”工厂!Ascent Funds 投资 Forge Nano

Atomic Armor 是一种纳米涂层技术,可提高锂离子电池和氢燃料电池等关键能量转换产品的性能,包括从电池、燃料电池和太阳能电池板到疫苗、牙科植入物甚至火箭燃料的一系列产品。

View More
1.2 亿美金锂电及燃料电池“原子装甲”工厂!Ascent Funds 投资 Forge Nano
金属及合金
原子层沉积在增材制造——3D 金属打印中的应用

通过原子层沉积(ALD)工艺包覆涂层,可有效提升 3D 打印金属粉末的性能:提高流动性、防潮/抗氧化性、烧结能力和减少夹杂物。

View More
原子层沉积在增材制造——3D 金属打印中的应用
能源催化
丙烷脱氢催化抗烧结,增强选择性,就用粉末 ALD 包覆

我们推测,ALD 涂层选择性地结合 Pt 纳米颗粒上的非对称位点,同时留下更具选择性的位点进行脱氢反应。

View More
丙烷脱氢催化抗烧结,增强选择性,就用粉末 ALD 包覆
新能源/锂电
PALD 粉末包覆在锂电新能源中的应用

随着新能源技术的不断发展,电池已经成为必不可少的工具,在消费电子和日常出行中都得到了广泛的应用。而在电池的使用中,循环使用寿命,能量密度以及安全性是决定其性能的关键指标。这是因为电池在运行过程中,会因为嵌锂,金属溶解,开裂,枝晶生长,放气等问题导致电池性能下降,而在目前的技术方案中,电池电极材料的工艺改善是提升电池整体性能的重中之重,其中ALD技术(原子层沉积)具有出色的成膜均匀性,保形性以及精确性,从而备受瞩目。但因为高昂的成本和设备要求,该技术一直停留在实验室阶段。Forge Nano经过多年研发,已经开发出低成本的规模化原子层沉积粉末包覆技术。

View More
PALD 粉末包覆在锂电新能源中的应用
电子半导体
半导体晶圆 ALD 薄膜

Forge Nano 的高生产率、核心工艺特别适用于具有挑战性的半导体应用,这些应用需要在面积增强结构上提供最高质量、极其保形的 ALD 薄膜。特别是高 K 电介质、金属-绝缘体-金属 (MIM) 薄膜叠层、用于沟槽隔离的超共形 SiO2 和用于芯片钝化的 ALD-Cap。

View More
半导体晶圆 ALD 薄膜
材料科学
ALD-CAP® 卓越的薄膜阻隔性能

原文标题: ALD-CAP® Exceptional Barrier Performance

ALD-Cap® 是一种柔性陶瓷涂层,由于所使用的原子层沉积 (ALD) 薄膜具有无针孔和低应力的特性,因此具有出色的阻隔性能。ALD 一次沉积一层原子层。 这些薄膜本质上是均匀的、无针孔并且几乎 100% 与基材表面共形。

View More
ALD-CAP® 卓越的薄膜阻隔性能
电子半导体
用于射频和电力电子封装和气密密封的原子层沉积

射频 (RF) 和电力电子对从电信和消费电子产品到运输和能源分配的一系列行业至关重要。 随着能源多样化和高速电子产品的普及,预计到 2027 年,射频和电力电子产品的全球市场规模将达到 366 亿美元。高温、紫外线辐射、氧气、盐度和湿度等极端环境 所有威胁都会降低和腐蚀有源组件,从而导致早期故障。 原子层沉积 (ALD) 显着提高了射频和电力电子设备的可靠性和性能。 使用 ALD 作为晶圆级的封装层或作为芯片/模块/PCB 级的最终气密密封已被证明可以显着提高电子性能和寿命。 ALD 层可实现更长的使用寿命、更高的性能和更低的成本,而无需增加与传统密封涂层相关的大量质量增益和高温处理。

View More
用于射频和电力电子封装和气密密封的原子层沉积
新能源/锂电
使用高通量粉末原子层沉积改进锂离子电池阴极和阳极

原文标题: Using High Throughput Powder Atomic Layer Deposition to Improve Lithium Ion Battery Cathodes and Anodes 

储存和使用电池时,电池内部会发生不良反应,导致性能下降。 电池内部许多不良的反应,例如过渡金属溶解、锂库存损失和固体电解质界面 (SEI) 生长,可以通过表面涂层来减缓或钝化。 原子层沉积 (ALD) 工艺提供性能最佳、最精确、可重复、可扩展且具有成本效益的涂层工艺,以减少不需要的反应并提高电池的性能。 ALD 可应用于各种阴极和阳极粉末,以产生包括更长的循环寿命、更少的气体生成、更慢的阻抗增长和更高的电压利用率等好处。

View More
使用高通量粉末原子层沉积改进锂离子电池阴极和阳极
材料科学
用于增材制造的原子层沉积——金属 3D 打印

金属 3D 打印在医疗、牙科、汽车、航空航天和国防工业中的应用呈指数级增长。 通过打印,可以轻松制作具有复杂设计和独特材料特性的定制组件用于各种应用。 随着对这些应用的需求持续增长,全球金属 3D 打印市场预计到 2027 年将达到约 60 亿美元。 尽管金属 3D 打印实现了许多新的应用,但该技术仍然存在原料粉末流动性差、打印过程中氧化的废金属粉末副产品、散装打印材料中的夹杂物和最终产品的热撕裂等问题。 用于 3D 打印的金属粉末原料上的原子层沉积 (ALD) 提供了多种改进。 粉末 ALD 可改善流动性、防潮/抗氧化性、烧结界面并减少夹杂物。

View More
Forge Nano 金属 3D 打印
能源催化
使用原子层沉积提高催化剂性能和寿命

催化剂在石油(石油和天然气)、化学品生产(例如聚合物/塑料)甚至食品工业等世界经济的主要工业部门中发挥着极其重要的作用。 数据表明,我们可以设计一种极其稳定、坚固且更具选择性的催化剂,以降低化学制造的能耗。 为此,我们需要通过动力学和热力学测量以及考虑实际过程可变性的计算来了解 ALD 外涂层与选择性和稳定性的关系。

View More
使用原子层沉积提高催化剂性能和寿命
电子半导体
OLED 和 MicroLED 显示技术的原子层沉积

尽管 OLED 和 microLED 技术有望实现增长,但它们都存在技术缺陷。由于湿气/氧气渗透,OLED 的寿命较短,而 MicroLED 因间距尺寸减小导致侧壁钝化不良和像素效率低而难以扩大生产。 原子层沉积 (ALD) 可以通过沉积无缺陷薄膜以提供气密封装和侧壁钝化以提高寿命来改进 OLED 和 microLED 技术。

View More
材料科学
使用原子层沉积进行表面改性

ALD使用两种或更多的前体化学品,它们以明确的顺序逐一与表面发生反应,从而在基底上建立起一个所需的表面。在惰性载气(如氩气)的推动下,每种前体的交替脉冲被沉积到基底上。这可以防止化学品在到达基材之前发生任何不良的化学变化。当化学品到达目标表面时,发生了所谓的 "半反应",所谓半反应是因为它只占材料合成的一部分。脉冲被定时为只持续一半反应所需的时间。这个反应过程是自我限制的,也就是说,当所有可用的表面都被覆盖时,它就结束了,这也是能够逐层构建材料的关键。

View More
Forge Nano 粉末原子层沉积
Online Message
Online Message

If you want to know more about the product information, book a sample or consult the after-sales service, you are welcome to call our hotline 400 857 8882 or leave us a message online, we receive your message will be the first time to reply to you.

  • *
  • *
  • *
  • *